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1. Introduction

The aim of this paper is to construct a cohomology theory for Poisson algebras
(not necessarily commutative). Here, we follow the notion of Poisson algebras as
introduced in [5]. By definition, a Poisson algebra over a field � consists of a
triple (A, ·, {−,−}), where (A, ·) is an associative �-algebra and (A, {−,−}) is a
Lie algebra over �, such that the Leibniz rule {a, bc} = {a, b}c + b{a, c} holds for
all a, b, c ∈ A. As a natural generalization of commutative Poisson algebras, this
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version of Poisson algebras has been studied by many authors [4, 10–13, 18, 19].
We also stress that there are other different versions of noncommutative Poisson
structures, see e.g. [3, 16, 17].

We would like to mention that this version of Poisson algebras is quite useful in
the study of commutative Poisson algebras, especially in the deformation theory.
In fact, an easy observation shows that a commutative Poisson algebra A has a
deformation quantization if and only if A can be deformed to a standard Poisson
algebra of some peculiar form within this version of Poisson algebras. Consequently,
if A has no nontrivial deformation, then A has no deformation quantization. In some
cases, for instance if A is prime as an associative algebra, then any deformation of
A will be standard [4, Theorem 1.2], and hence A admits nontrivial deformation if
and only if A has (higher version of) deformation quantization. We refer to [1] for
more details.

Let A be a Poisson algebra. In [18], the authors introduced the quasi-Poisson
enveloping algebra Q(A) for A, which is an associative algebra, and proved that the
category of quasi-Poisson modules over A is equivalent to the category of modules
over Q(A), see also Sec. 2 below for detail. Under the Lie bracket, the regular A-
bimodule A becomes a quasi-Poisson module over A and hence is a Q(A)-module.
We define the quasi-Poisson cohomology group of A with coefficients in the quasi-
Poisson module M to be the Yoneda-Ext groups Ext∗Q(A)(A, M), see Definition 3.1.
By constructing a projective resolution of the quasi-Poisson module A, we intro-
duce the quasi-Poisson complex to simplify the calculation of the quasi-Poisson
cohomology, see Theorem 3.7, Definition 3.9 and Proposition 3.10. Applying this
construction, we give explanation of lower dimensional quasi-Poisson cohomology
groups. Some examples are calculated in Sec. 4.

In Sec. 5, we show that the quasi-Poisson cohomology is closely related to
the Hochschild cohomology and Lie algebra cohomology. In fact, there exists a
Grothendieck spectral sequence, connecting the quasi-Poisson cohomology with the
Hochschild cohomology and the Lie algebra cohomology, see Theorem 5.4. In some
extreme cases, the quasi-Poisson cohomology algebra is shown to be the tensor
product of the Hochschild cohomology and the Lie algebra cohomology.

The quasi-Poisson cohomology has an important application in the calculation
of so-called Poisson cohomology, which controls the formal deformation of a Poisson
algebra, see [1] or [5] for details. In [1], the authors construct a long exact sequence
including Poisson cohomology, quasi-Poisson cohomology and Lie algebra cohomol-
ogy. Another possible application is to the study of an associative algebra, for each
associative algebra admits a standard Poisson structure. The quasi-Poisson coho-
mology group of standard Poisson algebras may give us an interesting invariant. In
fact, by Theorem 5.4, the quasi-Poisson cohomology groups carry the information
of both the Hochschild cohomology and the Lie algebra cohomology.

Throughout � will be a field of characteristic zero. All algebras considered are
over � and have a multiplicative identity element. We write ⊗ = ⊗� and Hom =
Hom� for brevity.
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2. Preliminaries

Let (A, ·, {−,−}) be a Poisson algebra (not necessarily commutative). A quasi-
Poisson A-module is an A-bimodule M together with a �-bilinear map {−,−}∗ :
A × M → M , which satisfies

{a, bm}∗ = {a, b}m + b{a, m}∗,
{a, mb}∗ = m{a, b} + {a, m}∗b,

{{a, b}, m}∗ = {a, {b, m}∗}∗ − {b, {a, m}∗}∗
for any a, b ∈ A and m ∈ M . Let M, N be quasi-Poisson modules. A homomorphism
of quasi-Poisson A-modules is a �-linear map f : M → N which is a homomorphism
of both A-bimodules and Lie modules.

Let us recall the definition of quasi-Poisson enveloping algebras, see [18] for more
details. We need some convention.

Denote by Aop the opposite algebra of the associative algebra A. To avoid con-
fusion, we usually use a to denote an element in A and a′ its counterpart in Aop.
The algebra Ae = A⊗Aop is called the enveloping algebra of the associative algebra
A. Denote by U(A) the universal enveloping algebra of the Lie algebra (A, {−,−}).
It is well known that the category of A-bimodules is isomorphic to the category of
left modules over Ae and the category of Lie modules over A is isomorphic to the
category of left U(A)-modules. Note that the universal enveloping algebra U(A) is
a cocommutative Hopf algebra. Using Sweedler’s notation, the comultiplication is
denoted by ∆(X) =

∑
X1 ⊗ X2 for any X ∈ U(A). The counit map is denoted by

ε and the identity element of U(A) is denoted by �. The Lie bracket makes A a Lie
module over A, or equivalently, a U(A)-module with the action given by

X(a) = {x1, {x2, . . . , {xn, a}} · · ·}
and �(a) = a for any X = x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ U(A), n ≥ 1 and a ∈ A. Hence the
usual tensor product makes Ae a U(A)-module with the action given by

X(a ⊗ b′) =
∑

X1(a) ⊗ (X2(b))′

for X ∈ U(A), a ⊗ b′ ∈ Ae. Moreover, by the co-commutativity of the co-product
of U(A), we know that Ae is a U(A)-module algebra, which means that the mul-
tiplication Ae ⊗ Ae → Ae is a U(A)-homomorphism. Then, we obtain a smash
product Ae#U(A), which is an associative algebra, see [15, Sec. 7.2]. Recall that
Ae#U(A) = Ae ⊗ U(A) as a �-vector space and the multiplication is given by

(a ⊗ b′#X)(c ⊗ d′#Y ) =
∑

aX1(c) ⊗ (X2(d)b)′#X3Y,

and the identity element is 1A ⊗ 1′A#�, where 1A is the multiplicative identity of
A. For more details, we refer to [18].

Definition 2.1 ([18]). Let A = (A, ·, {−,−}) be a Poisson algebra. The smash
product Ae#U(A) is called the quasi-Poisson enveloping algebra of A and denoted
by Q(A).
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Remark 2.2. By definition, the quasi-Poisson enveloping algebra Q(A) is just
A⊗Aop ⊗U(A) as a �-vector space. Let {vi | i ∈ S} be a �-basis for A, where S is
an index set with a total ordering ≤. Thus Q(A) has a PBW-basis given by

{vi ⊗ v′j#(vk1 ⊗ · · · ⊗ vkr ) | i, j, k1, . . . , kr ∈ S, k1 ≤ · · · ≤ kr, r ≥ 0}.
Theorem 2.3 ([18]). The category of quasi-Poisson modules over A is isomorphic
to the category of left Q(A)-modules.

Given a quasi-Poisson A-module M , one can define a Q(A)-module M by setting

(a ⊗ b′#X)m = aX(m)b

for all m ∈ M and a ⊗ b′#X ∈ Q(A). Conversely, given a left Q(A)-module M ,
we set

am = (a ⊗ 1′A#�)m, ma = (1A ⊗ a′#�)m, {a, m}∗ = (1A ⊗ 1′A#a)m

for all m ∈ M, a ∈ A to obtain a quasi-Poisson module over A.

3. Quasi-Poisson Cohomology

By Theorem 2.3, we know that there are enough projective and injective objects
in the category of quasi-Poisson modules. Consequently, one can construct a coho-
mology theory for a Poisson algebra by using projective or injective resolutions in a
standard way. In fact, under the action {−,−}∗ = {−,−}, the regular A-bimodule
A becomes a quasi-Poisson module over A. Then we may consider the Yoneda-Ext
groups Ext∗Q(A)(A, M) for any quasi-Poisson module M .

Definition 3.1. Let A be a Poisson algebra and Q(A) the quasi-Poisson enveloping
algebra of A. For any quasi-Poisson module M , the extension group ExtnQ(A)(A, M)
is called the nth quasi-Poisson cohomology group of A with coefficients in M , and
denoted by HQn(A, M).

Remark 3.2. The extension group HQn(A, A) is simply denoted by HQn(A). One
may consider the Yoneda-Ext algebra HQ∗(A) =

⊕
n≥0 HQn(A) with the multipli-

cation given by the Yoneda product, which is called the quasi-Poisson cohomology
algebra of A. Clearly, HQ∗(A) is non-negatively graded and each HQ∗(A, M) is a
graded right HQ∗(A)-module.

3.1. A free resolution of A as a Q(A)-module

In the sequel, we will construct a projective resolution of A as a Q(A)-module, so
that we can compute the cohomology groups Extn

Q(A)(A, M) in a standard way.
For convenience, for each i, j ≥ 0, we denote by Ai and ∧j the ith tensor product

and the jth exterior power of the �-space A, respectively.
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Our construction is based on the following two well-known resolutions. One is
the bar resolution of A as an Ae-module (A-bimodule)

S : · · · → Ai+2 δi−→ Ai+1 → · · · → A ⊗ A ⊗ A
δ1−→ A ⊗ A → 0,

with the differential

δi(a0 ⊗ a1 ⊗ · · · ⊗ ai+1) =
i∑

k=0

(−1)ka0 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ ai+1,

for any a0 ⊗a1⊗· · ·⊗ai+1 ∈ Ai+2, i ≥ 1. The other one is the projective resolution
of � as a trivial U(A)-module

K : · · · → U(A) ⊗ ∧j dj−→ U(A) ⊗ ∧j−1 → · · · → U(A) ⊗ ∧1 d1−→ U(A) → 0,

with the differential

dj(X ⊗ x1 ∧ · · · ∧ xj)

=
j∑

l=1

(−1)l+1(X · xl) ⊗ (x1 ∧ · · · x̂l · · · ∧ xj)

+
∑

1≤p<q≤j

(−1)p+qX ⊗ ({xp, xq} ∧ x1 ∧ · · · x̂p · · · x̂q · · · ∧ xj),

where X · xl is the product of X and xl in U(A), and the symbol x̂l indicates that
the term xl is to be omitted.

Taking the tensor product of S and K, we obtain the following bicomplex
· · · · · · · · ·
?
?
y

?
?
y

?
?
y

0 ←−−−−− A4 ⊗ U(A) ←−−−−− A4 ⊗ U(A) ⊗∧1 ←−−−−− A4 ⊗ U(A)⊗ ∧2 ←−−−−− · · ·
?
?
y

?
?
y

?
?
y

0 ←−−−−− A3 ⊗ U(A) ←−−−−− A3 ⊗ U(A) ⊗∧1 ←−−−−− A3 ⊗ U(A)⊗ ∧2 ←−−−−− · · ·
?
?
y

?
?
y

?
?
y

0 ←−−−−− A2 ⊗ U(A) ←−−−−− A2 ⊗ U(A) ⊗∧1 ←−−−−− A2 ⊗ U(A)⊗ ∧2 ←−−−−− · · ·
?
?
y

?
?
y

?
?
y

0 0 0

and its total complex Tot(S ⊗ K) is written as

Q : · · · → Qn
ϕn−−→ Qn−1 → · · · → Q1

ϕ1−→ Q0 → 0, (3.1)

where Q0 = A2 ⊗ U(A), and for n ≥ 1,

Qn =
⊕

i+j=n

Ai+2 ⊗ U(A) ⊗ ∧j ,

ϕn =
⊕

i+j=n

(δi ⊗ id + (−1)iid ⊗ dj).
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The following lemmas will be handy for later use. Some of them seem to be well
known. For the convenience of the reader, we also include a proof.

Lemma 3.3. Let H be a Hopf algebra and B an H-module algebra. Let M be a
B#H-module and N an H-module. Then M ⊗ N becomes a B#H-module via the
action

(b#h)(m ⊗ n) =
∑

b(h1m) ⊗ h2n,

for any b#h ∈ B#H, m ⊗ n ∈ M ⊗ N .

Proof. By definition, it suffices to check the equality

(b#h)((b′#h′)(m ⊗ n)) = ((b#h)(b′#h′))(m ⊗ n) (3.2)

for any b#h, b′#h′ ∈ B#H and m ⊗ n ∈ M ⊗ N . Indeed,

(b#h)((b′#h′)(m ⊗ n))

= (b#h)
(∑

b′(h′
1m) ⊗ h′

2n
)

=
∑

bh1(b′(h′
1m)) ⊗ h2(h′

2n)

=
∑

b(h11b
′)(h12h

′
1m) ⊗ h2(h′

2n),

where the last equality is deduced from the assumption that M is a B#H-module.
On the other hand, we have

((b#h)(b′#h′))(m ⊗ n)

=
(∑

b(h1b
′)#h2h

′
)

(m ⊗ n)

=
∑

b(h1b
′)((h2h

′)1m) ⊗ (h2h
′)2n

=
∑

b(h1b
′)(h21h

′
1m) ⊗ h22h

′
2n,

and the desired equality (3.2) holds.

Taking H = U(A), B = Ae, M = Ai (i ≥ 1) and N = U(A), we observe that Ai

is an Ae#U(A)-module with the action given by

(a ⊗ b′#X)(a1 ⊗ · · · ⊗ ai) =
∑

aX1(a1) ⊗ · · · ⊗ Xi(ai)b

for any a ⊗ b′#X ∈ Ae#U(A), a1 ⊗ · · · ⊗ ai ∈ Ai. In fact, we have

(1A ⊗ 1′A#X)((a ⊗ b′#�)(a1 ⊗ · · · ⊗ ai))

=
∑

X(aa1 ⊗ a2 ⊗ · · · ⊗ ai−1 ⊗ aib)

=
∑

X1(aa1) ⊗ X2(a2) ⊗ · · · ⊗ Xi−1(ai−1) ⊗ Xi(aib)
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=
∑

(X11(a)X12(a1)) ⊗ X2(a2) ⊗ · · · ⊗ Xi−1(ai−1) ⊗ (Xi1(ai)Xi2(b))

=
∑

((X11(a) ⊗ (Xi2(b))′#�)(X12(a1) ⊗ X2(a2)

⊗ · · · ⊗ Xi−1(ai−1) ⊗ Xi1(ai)))

= ((1A ⊗ 1′A#X)(a ⊗ b′#�))(a1 ⊗ · · · ⊗ ai)

where the third equality is deduced from the Leibniz rule and the last one from the
co-commutativity of U(A). By Lemma 3.3, we get a Q(A)-module Ai ⊗ U(A) with
the action given by

(a ⊗ b′#X)(a1 ⊗ a2 ⊗ · · · ⊗ ai ⊗ Y )

:=
∑

aX1(a1) ⊗ X2(a2) ⊗ · · · ⊗ Xi−1(ai−1) ⊗ Xi(ai)b ⊗ Xi+1Y

for all a ⊗ b′#X ∈ Q(A), a1 ⊗ · · · ⊗ ai ⊗ Y ∈ Ai ⊗ U(A). Moreover, for any j ≥ 0,
Ai ⊗ U(A) ⊗ ∧j is a Q(A)-module with the Q(A)-action induced from the one on
Ai ⊗ U(A).

Lemma 3.4. For any i, j ≥ 0, Ai+2 ⊗ U(A) ⊗ ∧j is a free Q(A)-module.

Proof. It suffices to prove that Ai+2 ⊗ U(A) is a free module, since Ai+2 ⊗
U(A) ⊗ ∧j is a direct sum of copies of Ai+2 ⊗ U(A).

Choose a �-basis {vi | i ∈ S} for A, where S is an index set with total ordering
≤, and we claim that Ai+2 ⊗ U(A) is a free Q(A)-module with a basis

{1A ⊗ vk(1) ⊗ · · · ⊗ vk(i) ⊗ 1A ⊗ � | k(1), . . . , k(i) ∈ S, i ≥ 0}.
Note that there exists a PBW-basis of Q(A) given by vs⊗v′t#(vi(1)⊗· · ·⊗vi(r))

with s, t, i(1), . . . , i(r) ∈ S and i(1) ≤ · · · ≤ i(r), r ≥ 0. Following the notation
in [18], we write −→α = vi(1) ⊗ · · · ⊗ vi(r) in U(A) for α = (i(1), . . . , i(r)) ∈ Sr,
i(1) ≤ · · · ≤ i(r) and call r the degree of the element −→α . Similarly, we also denote−→
θ = vk(1) ⊗ · · · ⊗ vk(i) in Ai for θ = (k(1), . . . , k(i)) ∈ Si.

Assume that some Q(A)-linear combination equals to zero, that is,∑
s,t,α,θ

λs,t,α,θ(vs ⊗ v′t#
−→α )(1A ⊗−→

θ ⊗ 1A ⊗ �) = 0,

where each vs ⊗ v′t#
−→α is chosen to be in the PBW-basis.

Each term in the left-hand side is written as

(vs ⊗ v′t#
−→α )(1A ⊗−→

θ ⊗ 1A ⊗ �)

=
∑

vs ⊗−→α1(
−→
θ ) ⊗ vt ⊗−→α2

=
∑

vs ⊗−→
θ ⊗ vt ⊗−→α + · · · ,

where each −→α2 in the rest terms has degree strictly less than the degree of α. Let
n be the highest degree of α’s occurring in the above sum. Combining those terms
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with deg(−→α ) = n in the resulting sum, we have∑
s,t,α,θ

deg(α)=n

λs,t,α,θ(vs ⊗−→
θ ⊗ vt ⊗−→α ) = 0.

Thus λs,t,α,θ = 0 for any s, t, α, θ, which completes the proof.

Lemma 3.5. The morphism ϕn (n ≥ 0) in the total complex (3.1) is a Q(A)-
homomorphism.

Proof. By definition, each ϕn in Q is a direct sum of
( δi ⊗ id

(−1)iid ⊗ dj

)
. It suffices to

show that both δi ⊗ id and id ⊗ dj are homomorphisms of Q(A)-modules. In fact,
δi ⊗ id and id ⊗ dj are Ae-homomorphisms and hence

(δi ⊗ id)((a ⊗ b′#�)x) = (a ⊗ b′#�)(δi ⊗ id)(x),

(id ⊗ dj)((a ⊗ b′#�)x) = (a ⊗ b′#�)(id ⊗ dj)(x),

for all x ∈ Ai+2 ⊗ U(A) ⊗ ∧j .
On the other hand, for any 1A ⊗ 1′A#X ∈ Q(A), a1 ⊗ · · · ⊗ ai+2 ⊗ Y ⊗ ωj ∈

Ai+2 ⊗ U(A) ⊗ ∧j , we have

(δi ⊗ id)((1A ⊗ 1′A#X)(a1 ⊗ · · · ⊗ ai+2 ⊗ Y ⊗ ωj))

= (δi ⊗ id)
(∑

X1(a1) ⊗ · · · ⊗ Xi+2(ai+2) ⊗ Xi+3Y ⊗ ωj
)

=
i+1∑
k=1

∑
(−1)k−1X1(a1) ⊗ · · · ⊗ Xk(ak)Xk+1(ak+1)

⊗ · · · ⊗ Xi+2(ai+2) ⊗ Xi+3Y ⊗ ωj

=
i+1∑
k=1

∑
(−1)k−1X1(a1) ⊗ · · · ⊗ Xk(akak+1)

⊗ · · · ⊗ Xi+1(ai+2) ⊗ Xi+2Y ⊗ ωj

= (1A ⊗ 1′A#X)

(
i+1∑
k=1

(−1)k−1a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ ai+2 ⊗ Y ⊗ ωj

)
= (1A ⊗ 1′A#X)((δi ⊗ id)(a1 ⊗ · · · ⊗ ai+2 ⊗ Y ⊗ ωj)),

where the third equality is deduced from the Leibniz rule. By the definition of dj ,
it is easy to check that

(id ⊗ dj)((1A ⊗ 1′A#X)(a1 ⊗ · · · ⊗ ai+2 ⊗ Y ⊗ ωj))

= (1A ⊗ 1′A#X)((id ⊗ dj)(a1 ⊗ · · · ⊗ ai+2 ⊗ Y ⊗ ωj)).

Since the quasi-Poisson enveloping algebra Q(A) can be generated by the elements
a ⊗ b′#� and 1A ⊗ 1′A#X for all a, b ∈ A, X ∈ U(A), we have that δi ⊗ id and
id ⊗ dj are Q(A)-homomorphisms.
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Lemma 3.6. Keeping the above notation, we have

H0(Q) ∼= A and Hn(Q) = 0, n ≥ 1.

Proof. By Künneth’s theorem (see [8, Chap. V, Theorem 2.1]), it is easily seen
that Q is exact at Qn for each n ≥ 1, since both S and K are exact for i, j > 0 and
Q is the total complex of S⊗K. For n = 0, applying the Künneth’s theorem again,
we get

H0(Q) ∼= H0(S) ⊗ H0(K) = A ⊗ � ∼= A.

Combining Lemmas 3.4, 3.5 and 3.6, we obtain a projective resolution of A as
a Q(A)-module.

Theorem 3.7. Let A be a Poisson algebra and Q(A) the quasi-Poisson enveloping
algebra of A. Then the complex Q together with the Q(A)-homomorphism ϕ0 : Q0 →
A given by ϕ0(a0⊗a1⊗X) = ε(X)a0a1 is a free resolution of A as a Q(A)-module,
where ε is the counit map of U(A).

Let M be a left Q(A)-module. Applying the functor HomQ(A)(−, M) to the
complex Q, we obtain a complex HomQ(A)(Q, M):

0 → HomQ(A)(Q0, M) → HomQ(A)(Q1, M) → HomQ(A)(Q2, M) → · · ·
→ HomQ(A)(Qn, M) → HomQ(A)(Qn+1, M) → · · · .

By Theorem 3.7, the nth quasi-Poisson cohomology group is calculated by

HQn(A, M) = Extn
Q(A)(A, M) = HnHomQ(A)(Q, M).

3.2. Quasi-Poisson complex

To compute the quasi-Poisson cohomology groups, one can use a simplified complex,
called the quasi-Poisson complex. Let M be a quasi-Poisson module. Applying the
functor HomQ(A)(−, M) to the bicomplex S ⊗ K, we obtain

· · · · · ·
x
?
?

x
?
?

0 −−−−−→ HomQ(A)(A
4 ⊗ U(A), M) −−−−−→ HomQ(A)(A

4 ⊗ U(A)⊗ ∧1, M) −−−−−→ · · ·
x
?
?

x
?
?

0 −−−−−→ HomQ(A)(A
3 ⊗ U(A), M) −−−−−→ HomQ(A)(A

3 ⊗ U(A)⊗ ∧1, M) −−−−−→ · · ·
x
?
?

x
?
?

0 −−−−−→ HomQ(A)(A
2 ⊗ U(A), M) −−−−−→ HomQ(A)(A

2 ⊗ U(A)⊗ ∧1, M) −−−−−→ · · ·
x
?
?

x
?
?

0 0
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Following from the natural �-isomorphisms

Φi,j : HomQ(A)(Ai+2 ⊗ U(A) ⊗ ∧j , M) �−→ Hom(Ai ⊗ ∧j , M),

Φi,j(f)((a1 ⊗ · · · ⊗ ai) ⊗ (x1 ∧ · · · ∧ xj))

= f(1A ⊗ (a1 ⊗ · · · ⊗ ai) ⊗ 1A ⊗ �⊗ (x1 ∧ · · · ∧ xj)),

the above bicomplex is isomorphic to the bicomplex Hom(A• ⊗ ∧•, M):
· · · · · · · · ·
x
?
?

x
?
?

x
?
?

0 −−−−−→ Hom(A2, M)
σ
1,0
H−−−−−→ Hom(A2 ⊗ ∧1, M)

σ
1,1
H−−−−−→ Hom(A2 ⊗ ∧2, M) −−−−−→ · · ·

σ
1,0
V

x
?
? σ

1,1
V

x
?
? σ

1,2
V

x
?
?

0 −−−−−→ Hom(A, M)
σ
1,0
H−−−−−→ Hom(A⊗∧1, M)

σ
1,1
H−−−−−→ Hom(A⊗∧2, M) −−−−−→ · · ·

σ
0,0
V

x
?
? σ

0,1
V

x
?
? σ

0,2
V

x
?
?

0 −−−−−→ M
σ
0,0
H−−−−−→ Hom(∧1, M)

σ
0,1
H−−−−−→ Hom(∧2, M) −−−−−→ · · ·

x
?
?

x
?
?

x
?
?

0 0 0

where

(σi,j
V (f))((a1 ⊗ · · · ⊗ ai+1) ⊗ (x1 ∧ · · · ∧ xj))

= a1f((a2 ⊗ · · · ⊗ ai) ⊗ (x1 ∧ · · · ∧ xj))

+
i∑

k=1

(−1)kf((a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ ai+1) ⊗ (x1 ∧ · · · ∧ xj))

+ (−1)i+1f((a1 ⊗ · · · ⊗ ai) ⊗ (x1 ∧ · · · ∧ xj))ai+1,

(σi,j
H (f))((a1 ⊗ · · · ⊗ ai) ⊗ (x1 ∧ · · · ∧ xj+1))

=
j+1∑
l=1

(−1)l−1

[
{xl, f((a1 ⊗ · · · ⊗ ai) ⊗ (x1 ∧ · · · x̂l · · · ∧ xj+1))}∗

−
i∑

t=1

f((a1 ⊗ · · · ⊗ {xl, at} ⊗ · · · ⊗ ai) ⊗ (x1 ∧ · · · x̂l · · · ∧ xj+1))

]

+
∑

1≤p<q≤j+1

(−1)p+qf((a1 ⊗ · · · ⊗ ai)

⊗ ({xp, xq} ∧ x1 ∧ · · · x̂p · · · x̂q · · · ∧ xj+1))

for all f ∈ Hom(Ai ⊗ ∧j , A), and (a1 ⊗ · · · ai) ⊗ (x1 ∧ · · · ∧ xj) ∈ Ai ⊗ ∧j , i, j ≥ 0.

Remark 3.8. Write δn = σn,0
V and dn = σ0,n

H for each n ≥ 0. Clearly, the leftmost
column (Hom(A•, M), δ•) is just the Hochschild complex HC(A, M) (see [7, 9]),
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and the bottom row LC(A, M) = (Hom(∧•, M), d•) is just Chevalley–Eilenberg
complex, which calculates the Lie algebra cohomology Ext∗U(A)(�, M).

Let HHn(A, M) denote the nth Hochschild cohomology of A with coefficients in
the A-bimodule M . Let HLn(A, M) = Extn

U(A)(�, M) denote the nth Lie algebra
cohomology of the Lie algebra A with coefficients in the Lie module M . Thus
HHn(A, M) = Hn(HC(A, M)) and HLn(A, M) = Hn(LC(A, M)). In particular, if
M = A, HHn(A, A) and HLn(A, A) are simply denoted by HHi(A) and HLn(A),
respectively.

Definition 3.9. Let A be a Poisson algebra and M a quasi-Poisson module. The
total complex of Hom(A• ⊗ ∧•, M),

0 → M
σ0−→ Hom(A ⊕ ∧1, M) σ1−→ Hom(A2 ⊕ A ⊗ ∧1 ⊕ ∧2, M) σ2−→ · · ·

→ Hom

 ⊕
i+j=n

Ai ⊗ ∧j , M

 σn

−−→ Hom

 ⊕
i+j=n+1

Ai ⊗ ∧j , M

→ · · ·

with the differential σn =
⊕

i+j=n(σi,j
V + (−1)iσi,j

H ) is called the quasi-Poisson
complex of A with coefficients in M , and denoted by QC(A, M).

An immediate consequence follows.

Proposition 3.10. The quasi-Poisson complex QC(A, M) is isomorphic to the
complex HomQ(A)(Q, M), and hence Hn(QC(A, M)) = HQn(A, M) for all n ≥ 0.

3.3. Lower-dimensional quasi-Poisson cohomology groups

First examples are lower-dimensional quasi-Poisson cohomology groups of a Poisson
algebra A. We denote by Z(A) and Z{A} the centers of the associative algebra and
the Lie algebra, respectively. Then we have the following easy result.

Proposition 3.11. Keep the above notation. Then HQ0(A) = Z(A) ∩ Z{A}.
Denote by Der(A) and DerL(A) the �-space of associative derivations and the

space of Lie derivations, respectively. Consider the maps ad: A → Der(A) and
adL : A → DerL(A) given by ad(a) = [−, a] and adL(a) = {−, a} for all a ∈ A.
Consequently, the differential σ0 = (ad, adL).

Moreover, for any f = (f1, f0) ∈ Kerσ1, by Proposition 3.10, we know that
f1 ∈ Der(A) and f0 ∈ DerL(A) and the equality

f1({x, a}) − {x, f1(a)} = f0(x)a − af0(x) (3.3)

holds for any (a, x) ∈ A ⊕ ∧1. We denote

D(A) = {(f1, f0) ∈ Der(A) ⊕ DerL(A) | (3.3) holds for all a, x ∈ A}.
Thus HQ1(A) is computed as follows by definition.
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Proposition 3.12. Keep the above notation. Then we have HQ1 = D(A)/Im σ0

and hence

dim� HQ1(A) = dim� D(A) − dim� A + dim� HQ0(A).

4. Examples

Example 4.1 (Standard Poisson algebras). Let A be an associative algebra.
For any a, b ∈ A, we denote by [a, b] the commutator ab − ba of a and b. Then
(A, ·, λ[−,−]) is a Poisson algebra for a fixed scalar λ ∈ �, and we call it a standard
Poisson algebra. By Proposition 3.11, we have HQ0(A) = Z(A).

More generally, HQ0(A) = Z(A) for any inner Poisson algebra since Z(A) ⊂
Z{A} in this case, see [19, Lemma 1.1] for more details. Recall that a Poisson
algebra (A, ·, {−,−}) is said to be inner if the Hamilton operator ham(a) := {a,−}
is an inner derivation of (A, ·) for any a ∈ A.

Now we turn to HQ1(A). Given f1 ∈ Der(A) and f0 ∈ DerL(A). Note that in
standard case, the equality (3.3) is equivalent to

Im(f0 − f1) ⊆ Z(A),

which holds if and only if f1 = f0 + g for some Lie derivation g satisfying Im g ⊆
Z(A). Since g([x, y]) = [g(x), y] + [x, g(y)], we have Ker(g) ⊇ [A, A], thus g induces
some g̃ ∈ Hom(A/[A, A], Z(A)). Conversely, each g̃ ∈ Hom(A/[A, A], Z(A)) gives a
Lie derivation g with Im g ⊆ Z(A). Thus we have the following characterization.

Proposition 4.2. Let A be a standard Poisson algebra. Then

HQ1(A) ∼= HH1(A) ⊕ Hom(A/[A, A], Z(A)).

In general, quasi-Poisson cohomology groups of higher degrees are difficult to
compute, and only some special cases are known to us.

Example 4.3. Let A be the �-algebra of upper triangular 2 × 2 matrices. It is
known to be the path algebra of the quiver of A2 type. More explicitly, A has a
�-basis {e1, e2, α}, and the multiplication is given by eiej = δijei, αe1 = e2α = 0
and e1α = αe2 = α, where δij is the Kronecker sign. Clearly 1A = e1 + e2.

Consider the standard Poisson algebra. By direct computation, one shows that
as a graded algebra, HQ∗(A) ∼= �〈x, y〉/〈x2, y2, xy+yx〉, the exterior algebra in two
variables. The grading is given by deg(x) = deg(y) = 1.

Example 4.4. Consider the standard Poisson algebra of A = M2(�), the �-algebra
of 2 × 2 matrices. Again direct calculation shows that

HQ0(A) = HQ1(A) = HQ3(A) = HQ4(A) = �,

and HQi = 0 for i �= 0, 1, 3, 4. In fact, as a graded algebra

HQ∗(A) ∼= �〈x, y〉/〈x2, y2, xy + yx〉,
where the grading is given by deg(x) = 1 and deg(y) = 3.
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Example 4.5 (Poisson algebras with trivial Lie bracket). Let (A, ·, {−,−})
be a finite-dimensional Poisson algebra with trivial Lie structure, i.e. {a, b} = 0 for
any a, b ∈ A. Clearly, Q(A) = A ⊗ Aop ⊗ U(A) and U(A) ∼= S(A), where S(A) is
the polynomial algebra of the vector space A.

One shows easily that as a Q(A)-module, A is the tensor product of the Ae-
module A and the trivial Lie module � over A. Then by a classical result in homo-
logical algebra, HQ∗(A) ∼= HH∗(A) ⊗ Ext∗S(A)(�,�); see for instance [2, Chap. XI,
Theorem 3.1]. By Koszul duality, Ext∗S(A)(�,�) ∼= ∧A, the exterior algebra of the
vector space A. Thus we have the following result.

Proposition 4.6. Let (A, ·, {−,−}) be a finite-dimensional Poisson algebra with
the trivial Lie bracket. Then HQ∗(A) ∼= HH∗(A) ⊗ ∧A.

Example 4.7 (Poisson algebras with finite Hochschild cohomology dimen-
sion). Let (A, ·, {−,−}) be a Poisson algebra. Suppose that the associative algebra
A has finite Hochschild cohomology dimension, that is, the nth Hochschild coho-
mology group of (A, ·) vanishes for sufficiently large n.

Proposition 4.8. Let (A, ·, {−,−}) be a Poisson algebra and k a fixed positive
integer. Suppose HHn(A) = 0 for all n > k. Set Ωk

n = Hom(
⊕

i+j=n,i≤k Ai⊗∧j , A).
Then the nth quasi-Poisson cohomology group

HQn(A) =
Kerσn ∩ Ωk

n

Im σn−1 ∩ Ωk
n

.

Proof. To compute the quasi-Poisson cohomology, we use the quasi-Poisson com-
plex QC(A, A) again. Consider the �-linear map π : Kerσn ∩ Ωk

n → HQn(A),
f �→ f + Im σn−1. Suppose f = (fn, . . . , f1, f0) ∈ Kerσn for some n > k.
By definition fn is an nth cocycle in the Hochschild complex, and hence there
exists some gn−1 ∈ Hom(An−1, A) such that fn = δn−1(gn−1) since the nth
Hochschild cohomology group vanishes, where δn is the nth differential in the
Hochschild complex. Clearly, f = f − σn−1g ∈ HQn(A) with g = (gn−1, 0, . . . 0) ∈
Hom(

⊕n−1
i=0 Ai ⊗ ∧n−1−i, A). Thus,

f − σn(g) = (0, f̃n−1, fn−2, . . . , f0) ∈ Kerσn.

For brevity, we still denote f̃n−1 by fn−1. Therefore

a1fn−1(a2 ⊗ · · · ⊗ an ⊗ x)

+
n−1∑
k=1

(−1)ifn−1(a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an ⊗ x)

+ (−1)nfn−1(a1 ⊗ · · · ⊗ an−1 ⊗ x)an = 0.

If n − 1 > k, we choose a �-basis {vi | i ∈ S} for ∧1 = A and define a �-linear map
f i

n−1 ∈ Hom(An−1, A) such that

f i
n−1(a1 ⊗ · · · ⊗ an−1) = fn−1(a1 ⊗ · · · ⊗ an−1 ⊗ vi)
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for each i ∈ S. Clearly, for each i ∈ S, f i
n−1 is an (n−1)th cocycle in the Hochschild

complex. Since HHn−1(A) = 0, there exists a �-linear map gi
n−2 ∈ Hom(An−2, A)

such that

f i
n−1 = δn−2(gi

n−2).

Now {gi
n−2 | i ∈ S} determines a �-linear map gn−2 ∈ Hom(An−2⊗∧1, A) as follows.

For any a1, . . . , an−2 ∈ A and any i ∈ S,

gn−2(a1 ⊗ · · · ⊗ an−2 ⊗ vi) = gi
n−2(a1 ⊗ · · · ⊗ an−2).

By the construction of f i
n−1’s and gn−2, we have

fn−1(a1 ⊗ · · · ⊗ an−1 ⊗ x)

=
∑
i∈S

λif
i
n−1(a1 ⊗ · · · ⊗ an−1)

=
∑
i∈S

λiδ
n−2(gi

n−2)(a1 ⊗ · · · ⊗ an−1)

= (σn−1(g))n−1(a1 ⊗ · · · ⊗ an−1 ⊗ x)

for any a1 ⊗ · · · ⊗ an−1 ⊗ x ∈ An−1 ⊗ ∧1, where x =
∑

i∈S λivi, and g =
(0, gn−2, 0, . . . , 0) ∈ Hom(

⊕n−1
i=0 Ai⊗∧n−1−i, A). So f = f − σn−1(g) ∈ HQn−1(A),

and

f − σn−1(g) = (0, 0, f̃n−2, fn−3, . . . , f0).

Denote again f̃n−2 = fn−2.
By repeating the above argument, we know that each f ∈ HQn(A) can be

written as

f = (0, . . . , 0, fk, . . . , f0).

Therefore, the �-homomorphism π is surjective. Clearly, Kerπ = Ωk
n∩Im σn−1, and

hence

HQn(A) =
Kerσn ∩ Ωk

n

Im σn−1 ∩ Ωk
n

.

5. A Grothendieck Spectral Sequence for
Quasi-Poisson Cohomology

In this section, we construct a Grothendieck spectral sequence for smash product
algebras, and apply it to the calculation of extensions of quasi-Poisson modules. As
a special case, this Grothendieck spectral sequence exhibit a close relation among
the quasi-Poisson cohomology, the Hochschild cohomology and the Lie algebra coho-
mology.

We begin with a general situation. Let H be a Hopf algebra over � with the
co-multiplication ∆ and the bijective antipode S. Let A be a module algebra
over H and A#H be the smash product. If M, N are modules over A#H , then

1650034-14

J.
 A

lg
eb

ra
 A

pp
l. 

20
16

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

SC
IE

N
C

E
 A

N
D

 T
E

C
H

N
O

L
O

G
Y

 O
F 

C
H

IN
A

 o
n 

03
/2

7/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

July 29, 2015 16:22 WSPC/S0219-4988 171-JAA 1650034

Cohomology structure for a Poisson algebra: I

HomA(M, N) is an H-module with the action given by (hf)(x) =
∑

h2f(S−1h1x)
for x ∈ M . It is easy to show the natural isomorphism HomH(�, HomA(M, N)) ∼=
HomA#H(M, N). Thus, we have the following well-known lemma which is crucial
in our calculation.

Lemma 5.1. Keep the above notation. Then we have the natural isomorphism of
bifunctors

HomH(�, HomA(−,−)) ∼= HomA#H(−,−).

Proof. For any A#H-modules M, N , the natural isomorphism

HomH(�, HomA(M, N)) �−→ HomA#H(M, N)

is given by (� �→ f) �→ f . The verification is routine so we omit the details.

Applying the Grothendieck spectral sequence [14, Theorem 10.47], we obtain a
spectral sequence for a smash product.

Lemma 5.2. Keep the above notation. Then we have a spectral sequence

ExtqH(�, Extp
A(M, N)) ⇒ Extp+q

A#H(M, N).

Consequently, we obtain a Grothendieck spectral sequence which is handy in
calculating quasi-Poisson cohomology groups.

Corollary 5.3. Let Q(A) the quasi-Poisson enveloping algebra of the Poisson alge-
bra A and M, N be modules over Q(A). Then we have a spectral sequence

Extq
U(A)(�, Extp

Ae(M, N)) ⇒ Extp+q
Q(A)(M, N).

In particular, if we take M = A, then we obtain a spectral sequence connecting
the Hochschild cohomology, the Lie algebra cohomology of A and the quasi-Poisson
cohomology.

Theorem 5.4. Let A be a Poisson algebra and N a quasi-Poisson A-module. Then
we have a spectral sequence

HLq(A, HHp(A, N)) ⇒ HQp+q(A, N).

Corollary 5.5. Let A be a Poisson algebra with HHp(A) = 0 for all p > 1. Then
we have the short exact sequence

0 → HLn−1(A, Dero(A)) → HQn(A) → HLn(A, Z(A)) → 0

for n ≥ 1, where Dero(A) is the space of outer derivations of A.

Proof. By the assumption, we have HHp(A) = 0 for any p ≥ 2, HH1(A) = Dero(A)
and HH0(A) = Z(A). And by [6, Proposition 2.4], we have the following short exact
sequence

0 → HLn−1(A, Dero(A)) → HQn(A) → HLn(A, Z(A)) → 0

for n ≥ 1.
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Corollary 5.6. Let A be a Poisson algebra over � with HHp(A) = 0 for all p > 0.
Then HQ∗(A) ∼= Z(A) ⊗ HL∗(A,�) as graded algebras.

Proof. By the assumption and Corollary 5.5, we have Dero(A) = 0 and HQn(A) ∼=
HLn(A, Z(A)). Furthermore, A has only inner Poisson structure and hence Z(A) ⊂
Z{A}. So HQ∗(A) ∼= Z(A) ⊗ HL∗(A,�).

Corollary 5.7. Let A be a finite-dimensional Poisson algebra. If A is homologically
smooth as an associative algebra, then

proj.dimQ(A)A ≤ dim� A + proj.dimAeA.

In particular, HQ∗(A) is finite-dimensional.

Proof. Recall that the homological smoothness of means proj.dimAeA < ∞. Since
A is finite-dimensional, we have ∧q = 0 and hence HLq(A,−) = 0 for any q >

dim� A. Therefore, HLq(A, HHp(A, N)) = 0 for p > proj.dimAeA or q > dim� A.
The desired inequality follows from the spectral sequence in Theorem 5.4.

In particular, HQn(A) = 0 for sufficiently large n. Since A is finite-dimensional,
HQn(A) is finite-dimensional for any n ≥ 0, and the last conclusion follows.

Example 5.8. Let Q be a finite connected quiver with underlying graph being
a tree. Denote by �Q the path algebra of Q. Then we have HHp(�Q) = 0 for
any p ≥ 1, see [7, Sec. 1.6]. We consider the standard Poisson structure on �Q.
By Corollary 5.6 it is immediate that HQn(�Q) = HLn(�Q,�), the usual nth Lie
algebra cohomology group of (A, [−,−]) with coefficients in �.

Example 5.9. Let Q be the 2-Kronecker quiver and A be the path algebra of
Q. Then we have HHp(A) = 0 for all p ≥ 2, HH1(A) = �

3, and HH0(A) = �.
By a direct calculation, we know that HH1(A) is a trivial module over the Lie
algebra (A, [−,−]). We consider the standard Poisson algebra of A. By some tedious
calculations, we obtain HL0(A,�) = �, HL1(A,�) = �

2, HL2(A,�) = �, and
HLp(A,�) = 0 for any p ≥ 3. From Corollary 5.5, it follows that HQ0(A) = �,
HQ1(A) = �

5, HQ2(A) = �
7, HQ3(A) = �

3 and HQn(A) = 0 for all n ≥ 4.
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